C-Nucleosides. Part 18.t Stereoselective Annulation of 6-Acetoxy-6-(2,3,5-tri-O-benzoyl- β-d-ribofuranosyl) pyran-3(2H,6H)-one with Ethylene Glycol to Pyrano-[2,3-b]-1,4-dioxine Glycosides

Noriaki Morishita, Shiho Honmi, Chihiro Ito and Isamu Maeba*
Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 468, Japan

The synthesis of (4aS,8aS)- and (4aR,8aR)-4a-(2,3,5-tri-O-benzoyl- β-D-ribofuranosyl)-2,3,8,8a-tetrahydropyrano[2,3-b]-1,4-dioxin-7(4aH,6H)-one 9a and 9b is described. Treatment of the 6 -acetoxypyranulose glycoside 2 with ethylene glycol in the presence of toluene-p-sulfonic acid in acetone for 1 h afforded the (6S)- and (6R)-6-(2-hydroxyethoxy) pyranulose glycosides 3a and 3b in 14 and 40% yield, respectively. The stereochemistry of compounds 3a and 3b was assigned as $6 S$ and $6 R$ by comparison of their CD spectra. When compounds 3a and 3b were treated with toluene-p-sulfonic acid at room temperature for 5 h , they reacted to give bicyclic compounds $\mathbf{9 a}$ and $\mathbf{9 b}$ in $\mathbf{6 5 \%}$ yield, respectively. The stereochemistry of the bicyclic compounds $\mathbf{9 a}$ and $\mathbf{9 b}$ was established by nuclear Overhauser enhancement experiments.

During our efforts to develop a general synthetic method for C nucleosides, we have prepared an extremely useful intermediate, viz. 6-hydroxy-6-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)pyran$3(2 H, 6 H)$-one 1, from which some novel ring transformations with a variety of amines have been reported. ${ }^{1}$ Since our interest in compound 1 continues, we now describe the stereoselective annulation of 6 -acetoxy- 6 -($2,3,5$-tri- O-benzoyl- β-d-ribofurano-syl)pyran-3($2 H, 6 H$)-one 2 with ethylene glycol to pyrano[2,3-b]-1,4-dioxine glycosides 9 a and 9 b . It is well known that the antibiotic spectinomycin, ${ }^{2}$ the cardenolide uscharidin, ${ }^{3}$ and the antimicrobial cercidin ${ }^{4}$ contain the pyrano[2,3-b]-1,4dioxine skeleton.

Spectinomycin

Treatment of hemiacetal 1 with acetic anhydride and pyridine at room temperature afforded acetate 2 in 71% yield after purification by silica gel column chromatography. Compound $\mathbf{2}$ is an inseparable mixture of diastereoisomers in a $4: 1$ ratio (${ }^{1} \mathrm{H}$ NMR spectroscopy). Compound 2 was treated with ethylene glycol in the presence of toluene-p-sulfonic acid (PTSA) at room temperature for 1 h . The reaction gave three products, deacetylated compound 1 and ($6 S$)- and ($6 R$)-6-(2-hydroxyethoxy)-6-(2,3,5-tri- O-benzoyl- β-d-ribofuranosyl)pyran-3($2 \mathrm{H}, 6 \mathrm{H}$)-one 3a and 3b in 26,14 and 40% yield, respectively. The similar chemical shifts of the anomeric protons in the NMR spectra of

[^0]the individual isomers 3a and $\mathbf{3 b}$ indicated that both had the β configuration and thus were diastereoisomeric only at C-6. Compound 3a was faster moving on TLC than was its isomer 3b. In a recent report ${ }^{5}$ from our laboratory, we described the stereochemistry at C-6 in 6-methoxy-6-(β-D-ribofuranosyl)pyran $-3(2 H, 6 H)$-one by using the ratio of derived spiro compounds. We attempted to apply this method to the stereochemistry at C-6 in diastereoisomers 3a and 3b. However, debenzoylation of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$ could not be employed because of the sensitivity and ease of decomposition of the enone on contact with alkaline solution. Then, treatment of compound $\mathbf{3 a}$ and $\mathbf{3 b}$ with semicarbazide was found to afford the corresponding semicarbazones $4 a$ and $4 b$ in good yield. The removal of the sugar protecting groups in compounds $\mathbf{4 a}$ and $\mathbf{4 b}$ was readily accomplished with methanolic sodium carbonate to afford the compounds 5a and 5b (Scheme 1).
The spiro compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ were synthesized from the tetraols 5a and 5b by using PTSA in acetone. The ratio of products $6 \mathbf{a}$ and $\mathbf{6 b}$ was $1: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The configuration of spiro compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ at $\mathrm{C}-2$ was established by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The $3^{\prime}-\mathrm{H}$ signal of compound $\mathbf{6 a}$ at $\delta 6.87$ occurs at lower field than that of its isomer $\mathbf{6 b}$ (δ 6.10). This chemical-shift difference can be attributed to the deshielding effect of a sugar oxygen atom in the chair conformation (dioxane ring) of the $2 R$-isomer 6 . ${ }^{6}$ Pure compound 6 a epimerized to diastereoisomer 6 b under the same conditions. At the equilibrium point the $R: S$ ratio was approximately $1: 1$ (Scheme 2). This result was found to be impractical for the estimation of stereochemistry at $\mathrm{C}-6$ in the precursors 3 a and 3 b . However, the formation of spiro compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ showed that the β-ribofuranoside configuration had been preserved during the reaction sequence.
To determine the stereochemistry at C-6 in compounds 3a and $\mathbf{3 b}$, we resorted to CD spectra. For the comparison of CD spectra, we prepared the ($6 S$)- and ($6 R$)-methoxyhydrazone compounds $8 \mathbf{a}$ and 8 b from ($6 S$)- and ($6 R$)-6-methoxy- 6 -($2,3,5-$ tri- O-benzoyl- β-d-ribofuranosyl)pyran- $3(2 \mathrm{H}, 6 \mathrm{H})$-one ${ }^{5}$ by the method used for the preparation of compounds 5 a and 5 b . The CD spectrum of ($6 S$)-compound 8a shows a positive Cotton effect at 282 nm , whereas a negative Cotton effect at 276 nm is observed in the spectrum of ($6 R$)-compound $\mathbf{8 b}$ (Fig. 1). Since the longer-wavelength Cotton effect of the less polar compound is negative, we have assigned this compound the $6 S$ configuration ($\mathbf{5 b}$) while the more polar isomer is considered to be the $6 R$ isomer (5a).

10

3a
$c(1)$

3b
c(i)

R

c(ii) $\left[\begin{array}{r}4 a \mathrm{Bz} \\ -5 a \mathrm{H}\end{array}\right.$

Scheme 1 Reagents: (a) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; (b) acetone, PTSA, ethylene glycol; (c) (i) 1,4-dioxane, semicarbazide, (ii) MeOH , aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Scheme 2

When compounds 3a and 3b were treated with PTSA at room temperature for 5 h , they reacted to give bicyclic compounds 9 a and 9b by an intermolecular Michael reaction in 65% yield, respectively. The stereochemistry of products 9 a and 9 b was determined by nuclear Overhauser effect (NOE) experiments (Scheme 3). Irradiation of 8a-H ($\delta 4.40$) in compound 9a gave a 1% enhancement to $1^{\prime}-\mathrm{H}(\delta 4.34), 1.6 \%$ enhancement to $2^{\prime}-\mathrm{H}(\delta$

6.16) and a 4% enhancement of the signal at $\delta 3.56$ assignable to $2-\mathrm{H}^{\mathrm{a}}$. Irradiation of $8 \mathrm{a}-\mathrm{H}(\delta 4.21$) in compound 9 b gave a 9% enhancement to $1^{\prime}-\mathrm{H}(\delta 4.42), 0.5 \%$ enhancement to $2^{\prime}-\mathrm{H}(\delta$ 6.13) and a 3.5% enhancement of the signal at $\delta 3.73$ assignable to $2-\mathrm{H}^{\mathrm{a}}$. These data indicate that the configuration of compounds 9 a and 9 b is $4 \mathrm{a} S, 8 \mathrm{a} S$ and $4 \mathrm{a} R, 8 \mathrm{a} R$, respectively.

Experimental

Mass spectra were taken on a Hitachi M-80 instrument by direct insertion at 70 eV ; fast-atom bombardment (FAB) mass spectra were run on a JMS-HX 110 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with JNM-GX-270 and GX-400 (JEOL) spectrometers, with tetramethylsilane as internal standard. J-Values are given in Hz. Analytical TLC was performed on glass plates coated with a $0.5-\mathrm{mm}$ layer of silica gel GF_{254} (Merck). The compounds were detected by UV light (254 nm).

6-Acetoxy-6-($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-benzoyl- β-D-ribofuranosyl)pyran-$3-(2 \mathrm{H}, 6 \mathrm{H})$-one 2 . -To a solution of compound $1(300 \mathrm{mg}, 0.54$ mmol) in acetic anhydride ($2 \mathrm{~cm}^{3}$) was added anhydrous pyridine (3 drops) at room temperature and the mixture was stirred for 12 h . The reaction mixture was poured into ice-water, then neutralized with aq. sodium hydrogen carbonate and extracted with chloroform ($3 \times 30 \mathrm{~cm}^{3}$). The extracts were combined, washed with water, dried over magnesium sulfate, and evaporated under reduced pressure to afford a syrup. The residue was chromatographed over a column of silica gel with hexane-ethyl acetate ($1: 1$) as eluent. This afforded the title compound $2(230 \mathrm{mg}, 71 \%)$ as a foam (Found: C, 65.6; H, 4.9. $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{11}$ requires $\left.\mathrm{C}, 65.99 ; \mathrm{H}, 4.70 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.06$ and $2.08\left(3 \mathrm{H}\right.$, each s, Me), $4.02\left(0.8 \mathrm{H}, \mathrm{d}, J 17.1,2-\mathrm{H}^{\mathrm{a}}\right), 4.17(0.2 \mathrm{H}, \mathrm{d}$, $J 17.0,2-\mathrm{H}^{\mathrm{a}}$), 4.41-4.86 ($4.2 \mathrm{H}, \mathrm{m}, \mathrm{I}^{\prime}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}$ and $2-\mathrm{H}^{\mathrm{b}}$), $4.96\left(0.8 \mathrm{H}, \mathrm{d}, J 2.7,1^{\prime}-\mathrm{H}\right), 5.67\left(0.8 \mathrm{H}, \mathrm{t}, J 5.4,3^{\prime}-\mathrm{H}\right), 5.74(0.2 \mathrm{H}$, $\left.\mathrm{t}, J 5.4,3^{\prime}-\mathrm{H}\right), 5.85\left(0.2 \mathrm{H}, \mathrm{dd}, J 5.4\right.$ and $\left.3.0,2^{\prime}-\mathrm{H}\right), 6.01(0.8 \mathrm{H}$, dd, $J 5.4$ and $\left.2.7,2^{\prime}-\mathrm{H}\right), 6.14(0.8 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H}), 6.24(0.2 \mathrm{H}, J$ $10.4,4-\mathrm{H})$ and $7.26-8.10(16 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $21.18(\mathrm{Me}), 62.83,63.42,67.75$ and $68.33\left(\mathrm{CH}_{2}\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 71.90$, $72.38,79.27,79.51,83.19$ and 84.19 (C-1', $-2^{\prime},-3^{\prime}$ and -4^{\prime}), 97.41 and 98.11 (C-6), 127.77-133.44 (Ar-C and C-4), 142.98 and 144.33 ($\mathrm{C}-5$), 165.04, 165.33 and $169.72(\mathrm{C}=\mathrm{O})$ and 192.77 and 192.94 (C-3).
(6S)- and (6R)-6-(2-Hydroxyethoxy)-6-($2^{\prime}, 3^{\prime}, 5^{\prime}$-tri-O-benzoyl-$\beta$-D-ribofuranosyl)pyran- $\mathbf{3}(2 \mathrm{H}, 6 \mathrm{H})$-one $\mathbf{3 a}$ and $\mathbf{3 b}$.-To a solution of compound $2(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ and ethylene glycol (1 cm^{3}) in acetone ($1 \mathrm{~cm}^{3}$) was added PTSA (10 mg), and the resulting solution was stirred at room temperature for 1 h . The reaction mixture was neutralized with aq. sodium hydrogen carbonate and extracted with chloroform ($3 \times 20 \mathrm{~cm}^{3}$). The extracts were combined, washed with water, dried over magnesium sulfate, and evaporated under reduced pressure to afford a syrup. The residual syrup was separated by preparative TLC (PLC) with hexane-ethyl acetate ($3: 2$) as developer.

Compound 1 ($24.0 \mathrm{mg}, 26 \%$); $R_{\mathrm{f}} 0.31$; syrup; identification was confirmed by comparing the ${ }^{1} \mathrm{H}$ NMR spectrum with that of the product previously prepared by the reported procedure. ${ }^{1}$

Fig. 1 CD spectra of semicarbazone c-nucleosides in methanol

Scheme 3 NOE experiments with diastereoisomers 9a and 9b

Compound 3a ($10.3 \mathrm{mg}, 14 \%$); $R_{\mathrm{f}} 0.26$; foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.65$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.37\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right), 4.53-4.61\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ H^{a}), $4.57\left(1 \mathrm{H}, \mathrm{d}, J 3.7,1^{\prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.77(1 \mathrm{H}, \mathrm{dd}, J$ 3.4 and $\left.11.5,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.80\left(1 \mathrm{H}, \mathrm{dd}, J 5.4\right.$ and $\left.8.7,3^{\prime}-\mathrm{H}\right)$, $5.99(1 \mathrm{H}$, dd, $J 3.7$ and $\left.5.4,2^{\prime}-\mathrm{H}\right), 6.27(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H}), 7.05(1 \mathrm{H}, \mathrm{d}, J$ $10.4,5-\mathrm{H})$ and $7.25-8.17(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 61.81$, 63.68, 66.45 and $68.71\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right.$ and -2$), 72.34,72.48,79.64$ and 85.32 ($\mathrm{C}-1^{\prime},-2^{\prime},-3^{\prime}$ and -4^{\prime}), 96.38 (C-6), 128.29-133.57 (Ar-C and -4), 146.09 (C-5), 165.36, 165.42 and $166.19(\mathrm{C}=\mathrm{O})$ and 192.99 (C-5) Found: $\mathrm{M}^{+}, 602.1809 . \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}_{11}$ requires M , 602.1786).

Compound 3b ($30.0 \mathrm{mg}, 40 \%$); $R_{\mathrm{f}} 0.17$; foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.71$ ($4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.19 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.4,2-\mathrm{H}^{\mathrm{a}}\right), 4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.11.4,2-\mathrm{H}^{\mathrm{b}}\right), 4.55\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 5.7,1^{\prime}-\mathrm{H}\right), 4.63$ $\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.77\left(1 \mathrm{H}, \mathrm{dd}, J 3.0\right.$ and $\left.12.1,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.70(1 \mathrm{H}, \mathrm{t}, J$ $\left.5.7,3^{\prime}-\mathrm{H}\right), 5.96\left(1 \mathrm{H}, \mathrm{t}, J 5.7,2^{\prime}-\mathrm{H}\right), 6.18(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H}), 6.96$ $(1 \mathrm{H}, \mathrm{d}, J \mathrm{~J} .4,5-\mathrm{H})$ and $7.31-8.10(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 61.68,63.54,65.13$ and $67.89\left(\mathrm{CH}_{2}, \mathrm{C}-5^{\prime}\right.$ and -2$)$, $71.25,72.29,79.99$ and 82.42 (C-1', $-2^{\prime},-3^{\prime}$ and -4^{\prime}), 96.24 (C-6), 128.24-133.45 (Ar-C and C-4), 144.05 (C-5), 165.02, 165.29 and $166.08(\mathrm{C}=\mathrm{O})$ and $193.11(\mathrm{C}-3)$ (Found: $\mathrm{M}^{+}, 602.1807$).
(6R)- and (6S)-6-(2-Hydroxyethoxy)-6-(2', $3^{\prime}, 5^{\prime}$-tri-O-benzoyl-β-D-ribofuranosyl)pyran-3(2H,6H)-one Semicarbazones 4a and

4b.-To a solution of compound $\mathbf{3 a}(9 \mathrm{mg}, 0.014 \mathrm{mmol})$ in $1,4-$ dioxane ($0.5 \mathrm{~cm}^{3}$) was added semicarbazide ($2 \mathrm{mg}, 0.027 \mathrm{mmol}$), and the resulting solution was stirred at room temperature for 12 h and then evaporated. The residue was chromatographed over a column of silica gel with chloroform-methanol (97:3) as eluent. This afforded compound $4 \mathrm{a}(5.4 \mathrm{mg}, 61 \%$) as a foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.63\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.7,1^{\prime}-\mathrm{H}\right)$, $4.53\left(1 \mathrm{H}\right.$, dd, $J 5.0$ and $\left.11.4,5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.63\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.66$ $\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right), 4.73\left(1 \mathrm{H}, \mathrm{dd}, J 5.0\right.$ and $\left.11.4,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.75(1 \mathrm{H}, \mathrm{t}, J$ $\left.5.4,3^{\prime}-\mathrm{H}\right), 5.98\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.5.4,2^{\prime}-\mathrm{H}\right), 6.24(1 \mathrm{H}, \mathrm{d}, J 10.4$, $5-\mathrm{H}), 6.41(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})$ and $7.31-8.02(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ \{Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, m-nitrobenzyl alcohol as matrix), 682.1996. $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{11}$ requires $\left.(\mathrm{M}+\mathrm{Na}), 682.2014\right\}$.

In the same manner, compound $\mathbf{4 b}(26.3 \mathrm{mg}, 55 \%)$ was obtained as a foam from substrate $3 \mathrm{~b}(43.7 \mathrm{mg}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.69$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.46\left(1 \mathrm{H}, \mathrm{d}, J 5.4,1^{\prime}-\mathrm{H}\right), 4.50-4.72(4 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.76\left(1 \mathrm{H}, \mathrm{dd}, J 3.4\right.$ and $\left.11.8,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $5.78\left(1 \mathrm{H}, \mathrm{t}, J 5.4,3^{\prime}-\mathrm{H}\right), 5.95\left(1 \mathrm{H}, \mathrm{t}, J 5.4,2^{\prime}-\mathrm{H}\right), 6.18(1 \mathrm{H}, \mathrm{d}, J$ $10.42,5-\mathrm{H}), 6.39(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})$ and $7.29-8.09(15 \mathrm{H}, \mathrm{m}$, ArH) \{Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, m-nitrobenzyl alcohol as matrix), 682.2012\}.
(6R)- and (6S)-6-(2-Hydroxyethoxy)-6-(β-D-ribofuranosyl)-pyran- $3(2 \mathrm{H}, 6 \mathrm{H})$-one Semicarbazones 5 a and 5 b .-To a solution
of compound $4 \mathrm{a}(5.4 \mathrm{mg}, 0.008 \mathrm{mmol})$ in methanol $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added aq. sodium carbonate and the mixture was kept at room temperature for 1 h , then evaporated. The residue was purified by PLC with chloroform-methanol (4:1) as developer. This afforded compound $5 \mathrm{5a}$ ($1.0 \mathrm{mg}, 36 \%$) as a foam; CD $(\mathrm{MeOH}) / \mathrm{nm} 233(\Delta \varepsilon-12.93)$ and $278(\Delta \varepsilon+7.41) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ 3.57-3.84 ($7 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.93(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.5.4,3^{\prime}-\mathrm{H}\right), 4.03\left(1 \mathrm{H}, \mathrm{d}, J 2.7,1^{\prime}-\mathrm{H}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J 2.7\right.$ and $5.4,2^{\prime}-$ H), $4.61\left(1 \mathrm{H}, \mathrm{d}, J 10.8,2-\mathrm{H}^{\mathrm{a}}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 10.8,2-\mathrm{H}^{\mathrm{b}}\right), 6.25(1$ H, d, J 10.4, 5-H) and 6.37 ($1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H}$) \{Found: [M + $\mathrm{Na}]^{+}$(FAB, glycerol as matrix), 370.1231. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{8}$, requires $(\mathrm{M}+\mathrm{Na}), 370.1227\}$.

In the same manner, compound $\mathbf{5 b}(5.0 \mathrm{mg}, 36 \%$) was obtained as a foam from substrate $\mathbf{4 b}(26.3 \mathrm{mg}) ; \mathrm{CD}(\mathrm{MeOH}) / \mathrm{nm} 234(\Delta \varepsilon$ $+18.03)$ and $274(\Delta \varepsilon-19.35) ; \delta_{H}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.57-3.87(7 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}$, and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.92\left(1 \mathrm{H}, \mathrm{t}, J 7.1,3^{\prime}-\mathrm{H}\right), 4.02$ $\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.7.1,2^{\prime}-\mathrm{H}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, J 3.7,1^{\prime}-\mathrm{H}\right), 4.55(1 \mathrm{H}$, d, $\left.J 15.8,2-\mathrm{H}^{\mathrm{a}}\right), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 15.8,2-\mathrm{H}^{\mathrm{b}}\right), 6.26(1 \mathrm{H}, \mathrm{d}, J 10.4$, $5-\mathrm{H})$ and 6.43 ($1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})\left\{\right.$ Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, glycerol as matrix), 370.1235\}.
(1R,2R,5R,6R,7R)- and (1R,2S,5R,6R,7R)-6,7-(Isopropyl-idenedioxy)-3,8-dioxabicyclo[3.2.1]octane-2-spiro-2'-pyran-
$5^{\prime}\left(\mathbf{2}^{\prime} \mathbf{H}, 6^{\prime} \mathrm{H}\right)$-one Semicarbazones 6a and $\mathbf{6 b}$.-To a solution of compound 5 b ($10 \mathrm{mg}, 0.029 \mathrm{mmol}$) in acetone ($0.5 \mathrm{~cm}^{3}$) was added PTSA (3 mg), and the resulting solution was stirred at room temperature for 1 h . The reaction mixture was neutralized with aq. sodium hydrogen carbonate and evaporated under reduced pressure. TLC [chloroform-methanol (97:3)] showed that the syrup contained two major compounds ($R_{\mathrm{f}} 0.30$ and 0.24). The ratio of products $\mathbf{6 a}: 6 \mathrm{~b}$ was $1: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The mixture was separated by PLC with chloroformmethanol (97:3) as developer, to afford the spiro compounds 6a ($3.4 \mathrm{mg}, 36 \%$) and $\mathbf{6 b}(3.5 \mathrm{mg}, 36 \%$).

Compound 6a: needles; m.p. $235-236^{\circ} \mathrm{C} ; \mathrm{CD}(\mathrm{MeOH}) / \mathrm{nm}$ $230(\Delta \varepsilon-10.20)$ and $277(\Delta \varepsilon+9.96) ; R_{\mathrm{f}} 0.30 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36$ and $1.50\left(6 \mathrm{H}\right.$, each s, Me), $3.60\left(1 \mathrm{H}, \mathrm{d}, J 11.8 \mathrm{~Hz}, 4-\mathrm{H}^{\mathrm{b}}\right), 3.82(1$ H , dd, $J 1.7$ and $\left.11.8,4-\mathrm{H}^{\mathrm{a}}\right), 3.95(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.21(1 \mathrm{H}, \mathrm{d}, J 1.7$, $5-\mathrm{H}), 4.58\left(1 \mathrm{H}, \mathrm{d}, J 16.1,6^{\prime} \cdot \mathrm{H}^{\mathrm{a}}\right)$, $4.71\left(1 \mathrm{H}, \mathrm{d}, J 16.1,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, 4.79 $(1 \mathrm{H}, \mathrm{d}, J 5.7,6-\mathrm{H}), 5.10(1 \mathrm{H}, \mathrm{d}, J 5.7,7-\mathrm{H}), 6.36\left(1 \mathrm{H}, \mathrm{d}, J 10.4,4^{\prime}-\right.$ H) and 6.87 ($\left.1 \mathrm{H}, \mathrm{d}, J 10.4,3^{\prime}-\mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 325.1300$ $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $\mathrm{M}, 325.1272$).
Compound 6b: needles; m.p. $230-232^{\circ} \mathrm{C}$; $\mathrm{CD}(\mathrm{MeOH}) / \mathrm{nm}$ $237(\Delta \varepsilon+9.36)$ and $278(\Delta \varepsilon-7.02) ; R_{\mathrm{f}} 0.24 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37$ and $1.51\left(6 \mathrm{H}\right.$, each s, Me), $3.47\left(1 \mathrm{H}, \mathrm{d}, J 11.4,4-\mathrm{H}^{\mathrm{b}}\right), 4.05(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}), 4.16\left(1 \mathrm{H}\right.$, dd, $J 1.7$ and $\left.11.1,4-\mathrm{H}^{\mathrm{a}}\right), 4.21(1 \mathrm{H}, \mathrm{d}, J 1.7,5-\mathrm{H})$, $4.44\left(1 \mathrm{H}, \mathrm{d}, J 16.1,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.83(1 \mathrm{H}, \mathrm{d}, J 5.7,6-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{d}, J$ $16.1,6-\mathrm{H}^{\mathrm{b}}$), $4.92(1 \mathrm{H}, \mathrm{d}, J 5.7,7-\mathrm{H}), 6.10\left(1 \mathrm{H}, \mathrm{d}, J 10.4,3^{\prime}-\mathrm{H}\right)$ and $6.38\left(1 \mathrm{H}, \mathrm{d}, J \mathbf{1 0 . 4}, 4^{\prime}-\mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 325.1277$).

Epimerization of Compound 6a by PTSA.-To a solution of pure $6 \mathrm{a}(13 \mathrm{mg}$) in acetone was added PTSA (3 mg), and the resulting solution was stirred at room temperature for 5 h . Evaporation of the reaction mixture under reduced pressure gave a syrup, shown by ${ }^{1} \mathrm{H}$ NMR spectroscopy to consist of epimers $6 \mathbf{a}$ and 6 b in the ratio $1: 1$. Also, compound $\mathbf{6 b}$ could be epimerized to compound $\mathbf{6 a}$ under the same conditions. The ratio 6a:6b was $1: 1$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
(6S)- and (6R)-6-Methoxy-6-($2^{\prime}, 3^{\prime}, 5^{\prime}-$ tri-O-benzoyl- β-D-ribo-furanosyl)pyran-3($2 \mathrm{H}, 6 \mathrm{H}$)-one Semicarbazones 7a and 7 b .Compound 7a was prepared from ($6 S$) 6 -methoxy- 6 - $\left(2^{\prime}, 3^{\prime}, 5^{\prime}-\right.$ tri- O-benzoyl- β-d-ribofuranosyl)pyran- $3\left(2 \mathrm{H}, 6 \mathrm{H}\right.$)-one ${ }^{5}$ and semicarbazide as described above for compound 4a.
Compound 7a: yield 75\%; foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.30(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.46(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 4.48\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.60\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.66(1$ $\left.\mathrm{H}, \mathrm{d}, J 3.0,1^{\prime}-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J 3.4\right.$ and $\left.11.4,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.76(1 \mathrm{H}$,
dd, $J 5.4$ and $\left.7.1,3^{\prime}-\mathrm{H}\right), 5.94\left(1 \mathrm{H}, \mathrm{dd}, J 3.0\right.$ and $\left.7.1,2^{\prime}-\mathrm{H}\right), 6.21$ (1 $\mathrm{H}, \mathrm{d}, J 10.4,5-\mathrm{H}), 6.38(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})$ and $7.26-8.09(15 \mathrm{H}, \mathrm{m}$, ArH) \{Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, m-nitrobenzyl alcohol as matrix), 652.1880. $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{NaO}_{10}$, requires $(\mathrm{M}+\mathrm{Na})$, 652.1908\}.

Compound 7b was prepared from ($6 R$)-6-methoxy-6-($2^{\prime}, 3^{\prime}, 5^{\prime}-$ tri- O-benzoyl- β-D-ribofuranosyl)pyran- $3(2 H, 6 H)$-one ${ }^{5}$ and semicarbazide as described above for compound $\mathbf{4 a}$.

Compound 7b: yield 85%; foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 4.43-4.63 ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J 4.7,1^{\prime}-\right.$ H), $4.70\left(1 \mathrm{H}, \mathrm{dd}, J 3.7\right.$ and $\left.11.8,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.72\left(1 \mathrm{H}, \mathrm{t}, J 6.1,3^{\prime} \cdot \mathrm{H}\right)$, $5.83\left(1 \mathrm{H}, \mathrm{dd}, J 4.7\right.$ and $\left.6.1,2^{\prime}-\mathrm{H}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J 10.4,5-\mathrm{H})$, $6.38(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})$ and $7.26-8.08(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ \{Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, m-nitrobenzyl alcohol as matrix), 652.1960\}.
(6S)- and (6R)-6-Methoxy-6-(β-D-ribofuranosyl)pyran-3$(2 \mathrm{H}, 6 \mathrm{H})$-one Semicarbazones 8a and 8b.-Compound 8a was prepared from 7a as described above for compound 5a. Compound 8a: yield 63%; foam; $\mathrm{CD}(\mathrm{MeOH}) / \mathrm{nm} 233(\Delta \varepsilon-11.23)$ and $282(\Delta \varepsilon+4.65) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.56 (1 H , dd, $J 5.4$ and 11.7, $5^{\prime}-\mathrm{H}^{\mathrm{a}}$), 3.73 (1 H , dd, $J 2.7$ and 11.7, $5^{\prime}-$ $\left.\mathrm{H}^{\mathrm{b}}\right), 3.84\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 4.02\left(1 \mathrm{H}, \mathrm{d}, J 3.4,1^{\prime}-\mathrm{H}\right), 4.17$ (1 H , dd, $J 3.0$ and $\left.5.0,3^{\prime}-\mathrm{H}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, J 16.1,2-\mathrm{H}^{\mathrm{a}}\right), 4.72(1 \mathrm{H}$, d, $\left.J 16.1,2-\mathrm{H}^{\mathrm{b}}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J 10.4,5-\mathrm{H})$ and $6.48(1 \mathrm{H}, \mathrm{d}, J 10.4$, 4-H) \{Found: $[\mathrm{M}+\mathrm{Na}]^{+}$(FAB, glycerol as matrix), 340.1131 . $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{7}$, requires ($\mathrm{M}+\mathrm{Na}$), 340.1121$\}$.

Compound 8b was prepared from compound 7b as described above for compound 5 a. Compound $\mathbf{8 b}$: yield 58%; foam; CD $(\mathrm{MeOH}) / \mathrm{nm} 230(\Delta \varepsilon+7.10)$ and $276(\Delta \varepsilon-6.16) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3,62\left(1 \mathrm{H}, \mathrm{dd}, J 4.0\right.$ and 11.7, $\left.5^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, 3.75-3.95 $\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-, 4^{\prime}-\mathrm{H}\right.$ and $5^{\prime} \mathrm{H}^{\mathrm{b}}$), $4.12\left(1 \mathrm{H}, \mathrm{d}, J 3.4,1^{\prime}-\mathrm{H}\right), 4.43$ $\left(1 \mathrm{H}, \mathrm{d}, J 15.8,2-\mathrm{H}^{\mathrm{a}}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J 15.8,2-\mathrm{H}^{\mathrm{b}}\right), 6.25(1 \mathrm{H}, \mathrm{d}, J$ $10.4,5-\mathrm{H})$ and $6.36(1 \mathrm{H}, \mathrm{d}, J 10.4,4-\mathrm{H})\left\{\right.$ Found: $[\mathrm{M}+\mathrm{Na}]^{+}$ (FAB, glycerol as matrix), 340.1144$\}$.
(4aS,8aS)- and (4aR,8aR)-4a-($2^{\prime}, 3^{\prime}, 5^{\prime}-$ Tri-O-benzoyl- β-D-ribo-furanosyl)-2,3,8,8a-tetrahydropyrano[2,3-b]-1,4-dioxin-
$7(4 \mathrm{aH}, 6 \mathrm{H})$-one 9 a and 9 b .-To a solution of compound 3a (10 $\mathrm{mg}, 0.017 \mathrm{mmol}$) in acetone ($0.5 \mathrm{~cm}^{3}$) was added PTSA (3 mg), and the resulting solution was stirred at room temperature for 5 h . The reaction mixture was neutralized with aq. sodium hydrogen carbonate and evaporated to give a syrup. The residue was purified by PLC with hexane-ethyl acetate (3:2) as developer.

Compound $9 \mathrm{a}\left(6.7 \mathrm{mg}, 65 \%\right.$); foam; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.62(1 \mathrm{H}, \mathrm{dd}, J$ 3.4 and $\left.17.5,8-\mathrm{H}^{\mathrm{a}}\right), 2.74\left(1 \mathrm{H}, \mathrm{dd}, J 3.4\right.$ and $\left.17.5,8-\mathrm{H}^{\mathrm{b}}\right), 3.42(1 \mathrm{H}$, dd, $J 2.0$ and $\left.11.8,3-\mathrm{H}^{2}\right), 3.56\left(1 \mathrm{H}, \mathrm{td}, J 2.0\right.$ and $\left.11.8,2-\mathrm{H}^{\mathrm{a}}\right), 3.66$ $\left(1 \mathrm{H}, \mathrm{dd}, J 3.0\right.$ and $\left.11.8,2-\mathrm{H}^{\mathrm{b}}\right), 4.08\left(1 \mathrm{H}, \mathrm{td}, J 3.0\right.$ and $11.8,3-\mathrm{H}^{\mathrm{b}}$), $4.23\left(1 \mathrm{H}, \mathrm{d}, J 17.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, J 2.0,1^{\prime}-\mathrm{H}\right), 4.40(1 \mathrm{H}, \mathrm{t}, J$ $3.4,8 \mathrm{a}-\mathrm{H}), 4.48\left(1 \mathrm{H}, \mathrm{dd}, J 5.0\right.$ and $\left.12.1,5^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.58\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $4.63\left(1 \mathrm{H}, \mathrm{d}, J 17.5,6-\mathrm{H}^{\mathrm{b}}\right)$, $4.86\left(1 \mathrm{H}\right.$, dd, $J 3.4$ and $12.1,5^{\prime}-$ $\left.\mathrm{H}^{\mathrm{b}}\right)$, $5.83\left(1 \mathrm{H}\right.$, dd, $J 5.7$ and $\left.8.1,3^{\prime}-\mathrm{H}\right), 6.16(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and $\left.5.7,2^{\prime}-\mathrm{H}\right)$ and $7.24-8.21(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 41.56(\mathrm{C}-8)$, 61.24, 63.38 and 65.35 (C-2, -3 and -6), 69.86, 72.02, 72.56, 79.34 and 84.12 ($\mathrm{C}-1^{\prime},-2^{\prime},-3^{\prime},-4$ and -8 a), 72.36 (C-5'), 93.55 (C-4a), 128.27-133.32 (Ar-C), 165.07, 165.18 and $166.06(\mathrm{C}=\mathrm{O})$ and 205.83 (C-7) (Found: $\mathrm{M}^{+}, 602.1765 . \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}_{11}$ requires M , 602.1786).

In the same manner, compound 9b ($6.0 \mathrm{mg}, 65 \%$) was obtained as a foam from substrate $\mathbf{3 b}(10 \mathrm{mg}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.59(1$ H , dd, $J 3.4$ and $17.1,8-\mathrm{H}^{\mathrm{a}}$), $3.28\left(1 \mathrm{H}\right.$, dd, $J 3.4$ and $17.1,8-\mathrm{H}^{\mathrm{b}}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J 2.7\right.$ and $\left.11.8,3-\mathrm{H}^{2}\right), 3.73(1 \mathrm{H}, \mathrm{td}, J 2.7$ and 11.8 , $\left.2-\mathrm{H}^{\mathrm{a}}\right), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J 3.4\right.$ and $\left.11.8,2-\mathrm{H}^{\mathrm{b}}\right), 4.08(1 \mathrm{H}, \mathrm{td}, J 3.4$ and $\left.11.8,3-\mathrm{H}^{\mathrm{b}}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, J 11.4,6-\mathrm{H}^{\mathrm{a}}\right), 4.21(1 \mathrm{H}, \mathrm{t}, J 3.4,8 \mathrm{a}-\mathrm{H})$, 4.42 ($\left.1 \mathrm{H}, \mathrm{t}, J 3.4,1^{\prime}-\mathrm{H}\right), 4.39-4-47\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{2}\right)$, 4.55-4.64 (1 $\left.\mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, J 11.4,6-\mathrm{H}^{\mathrm{b}}\right), 4.73(1 \mathrm{H}$, dd, $J 3.4$ and $\left.11.8,5^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 5.71\left(1 \mathrm{H}, \mathrm{dd}, J 5.4\right.$ and $\left.7.1,3^{\prime}-\mathrm{H}\right), 6.13(1 \mathrm{H}, \mathrm{dd}, J 3.4$
and 5.4, $\left.2^{\prime}-\mathrm{H}\right)$ and $7.25-8.11(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 41.56$ (C-8), 61.11, 63.45 and 65.12 (C-2, -3 and -6), 71.89, 72.20, 73.06, 79.35 and 85.66 (C-1', $-2^{\prime},-3^{\prime},-4^{\prime}$ and $-8 a$), 72.30 (C-5'), 92.98 (C4a), 128.26-133.25 (Ar-C), 165.07, 165.16 and $166.03(\mathrm{C}=\mathrm{O})$ and 206.08 (C-7) (Found: M ${ }^{+}$, 602.1811).

Acknowledgements

We thank Mr. K. Masuda, Analytical Center of our University, for measurement of some high-resolution mass spectra.

2 M. Hoeksema, A. D. Argoudelis and P. F. Wiley, J. Am. Chem. Soc., 1963, 85, 2652; W. Rosenbrook, Jr., J. Antibiot., Ser. B2, 1979, 32, S-211.
3 G. Hesse, F. Reicheneder and H. Eysenbach, Justus Liebigs Ann. Chem., 1939, 537, 67; F. Brüschweiler, K. Stöckel and T. Reichstein, Helv. Chim. Acta, 1969, 52, 2276.
4 M. Tada and K. Sakurai, Phytochemistry, 1991, 30, 1119.
5 I. Maeba, K. Osaka, N. Morishita, K. Fujioka and C. Ito, J. Chem. Soc., Perkin Trans. 1, 1991, 939.
6 I. Maeba, O. Hara, M. Suzuki and H. Furukawa, J. Org. Chem., 1987, 52, 2368.

Paper 1/05854A
Received 9th November 1991
Accepted 31st December 1991

[^0]: \dagger Part 17, M. Hayashi, A. Araki and I. Maeba, Heterocycles, in the press.

